Methods for detection of enteric viruses in food

David Lees EURL Director

European Union Reference Laboratory for Monitoring Bacteriological and Viral Contamination of Bivalve Molluscs

European Community Reference Laboratories Regulation (EC) No 882/2004, Article 32

- Coordination of and assistance to NRLs
- Analytical methods for Official Control testing
- Comparative (proficiency) testing
- New analytical methods (R&D)
- Training
- Advice to DG SANCO
- Collaboration with third countries

Background

 Virus outbreaks continue to occur in the EU and Internationally RAPID COMMUNICATIONS

Norovirus outbreaks linked to oyster consumption in the United Kingdom, Norway, France, Sweden and Denmark, 2010

T Westrell (therese.westrell@ecdc.europa.eu)¹, V Dusch², S Ethelberg³, J Harris⁴, M Hjertqvist⁵, N Jourdan-da Silva⁶, A Koller⁷, A Lenglet⁴, M Lisby⁸, L Vold⁹

 European legislation foresees virus controls when the methods are sufficiently developed and available for use

COMMISSION REGULATION (EC) No 2073/2005

of 15 November 2005

on microbiological criteria for foodstuffs

(27) In particular, criteria for pathogenic viruses in live bivalve molluscs should be established when the analytical methods are developed sufficiently. There is a need for development of reliable methods for other microbial hazards too, e.g. Vibrio parahaemolyticus.

 EURL responsible for analytical methods used in Official Controls

PCR methods reviewed in 2006

- 23 international labs involved in 2006 ring trial organised by EURL - detection of norovirus and HAV in contaminated oysters
- Virus extraction; 13 methods
- Viral RNA extraction; 29 methods
- RT-PCR; one and two-step, conventional single round, nested and semi-nested and real-time RT-PCR formats used
- Primers/probes; at least 13 different sets
- Development of standardised methodology necessary for harmonisation and consumer safety

ISO/CEN method

- EURL has lead method standardisation and validation for norovirus and hepatitis A in food
 - Chairs CEN/TC 275/WG6/ TAG4
 - 10 year development programme
 - Circa 50 participants from 13 countries
 - First ever ISO technical specification for viruses in food (ISO 15216 parts 1 and2) published May 2013
 - Standard protocols on EURL website
 - Formal multi lab validation of the virus method now completed

European Committee for Standardization Comité Européen de Normalisation Europäisches Komitee für Normung

Framework for method

- Horizontal method (all foodstuffs included)
- Viruses of primary focus:
 - Norovirus
 - Hepatitis A virus
- Matrices of primary focus:
 - Food surfaces
 - Salad crops
 - Soft fruits
 - Bivalve shellfish
 - Bottled water

Digestive gland dissection

• Proteinase K digestion of chopped glands

RNA extraction

- Boom technology (virus capsid disruption with chaotropic reagents, adsorption of RNA to silica particles)
- Use of magnetic silica technology preferred by many group members to centrifugation based protocol

Cetas

RT-PCR

- One-step TaqMan ("hydrolysis probe") RT-PCR for all targets
- Standard stipulates that primers and probes "must be published in a peer-reviewed journal and be verified for use against a broad range of strains of target virus"
- Norovirus primers must target junction of ORF1/2
- HAV primers must target 5' NCR

Quantitation using standard curve

 Reporting in genome copies per gram of matrix tested Cefas

Set QC criteria for: inhibition and recovery

Cefas

TECHNICAL SPECIFICATION

ISO/TS 15216-1

First edition

Microbiology of food and animal feed — Horizontal method for determination of hepatitis A virus and norovirus in food using real-time RT-PCR —

Part 1: Method for quantification

Microbiologie des aliments — Méthode horizontale pour la recherche des virus de l'hépatite A et norovirus dans les aliments par la technique RT-PCR en temps réel —

Partie 1: Méthode de quantification

Validation of ISO/TS 15216

- Maximum lifespan of technical specification 6 years; requires validation to convert to "full" standard
- European project currently underway to validate TS 15216-1 (quantification) in 7 food matrices
 - Oysters
 - Mussels
 - Raspberries
 - Lettuce
 - Spring Onions
 - Bottled Water
 - Food Surfaces (Bell Pepper)
- In two stages
 - Method characterisation in single labs
 - Inter laboratory trials
- Generation of data complete; analysis ongoing

Method characterisation results

• Quantification of norovirus GI in oysters

Cefas

Inter-laboratory trial results

• Quantification of norovirus GI in oysters

EURL virus proficiency testing

- World wide
- 13 distributions
- 33 countries
- 42 labs participated in 2013

ear	eport No.	lorovirus	ep A virus	Vhole animal	enticule	 Cnina Croatia Denmark Estonia Finland France Germany Greece
>		2		>	<u> </u>	Hungary
2003	KI 3		\checkmark			
2004	RT 7	\checkmark		~		 Italy
2005	RT 10					Korea
2005						Latvia
2005	KT 15	\checkmark	~	\checkmark		New Zealar
2006	RT 19	\checkmark	~		\checkmark	Norway
2008	RT 25					Peru Polond
2000		×	~		•	Portugal
2009	RT 27	✓	✓		V	Romania
2009	RT 33	V	\checkmark		\checkmark	Singapore
2011	DT 30					Slovakia
2011	NT 39	×	×	×	~	 Slovenia
2011	RT 43	✓	\checkmark	\checkmark	\checkmark	Spain
2012	RT 46	\checkmark	\checkmark	\checkmark	\checkmark	 Sweden Netherlands
2012	DT 50					• UK
2013	KT 50			V		• USA
2014	RT 53	\checkmark	\checkmark	~	✓	0.1

Australia

Austria
Belgium
Canada
Chile

Letas

EURL virus proficiency test

Participation 2013

Quantification of norovirus GI in oysters (2013)

PT 50 - Virus	
Country	
Australia	1
Austria	NRL
Belgium	NRL +1
Canada	2
Chile	1
Denmark	NRL
Finland	1
France	NRL +2
Germany	NRL +1
Ireland	NRL
Italy	NRL
Korea	1
Netherlands	NRL +2
New Zealand	1
Norway	1
Peru	4
Poland	NRL +1
Portugal	NRL
Romania	NRL
Singapore	1
Slovakia	NRL
Slovenia	NRL
Spain	NRL + 5
Sweden	NRL
UK	NRL + 1

Virus (norovirus and HAV)

EUMS	17
MS NRLs	16
EFTA countries	1
Total EFTA country lab	1
total EU+EFTA labs	31
third countries	7
total 3rd country labs	11
	42

Quality assurance - standard reference materials

- Not previously available, needed for adoption of methodology
- Developed norovirus (GI and GII), HAV lenticules as control materials
- Homogeneity, stability, titre demonstrated to ISO standards
- Lenticules now available commercially in collaboration with Public Health England
- Certificate of analysis (including titre)

ournal of Applied Microbiology Journal of Applied Microbiology ISSN 1364-5072 **ORIGINAL ARTICLE** The development of LENTICULES[™] as reference materials for noroviruses R. Hartnell¹, J. Lowther¹, J. Avant³, D. Dancer¹, D. Lees¹ and J. Russell² 1 Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, UK 2 Food & Environmental Proficiency Testing Unit (REPTU), Health Protection Agency, London, UK Cefas Health Protection Agency **Certificate of Analysis** 1. Heath Protection Agency Reference Material (RM) Manufacturer

The reference material values and uncertainties are determined in accordance with ISO Guide 34-2009 'Quality System Guidelines for the Production of Reference Materials' and ISO Guide 35-2006 'Reference Materials – General and Statistical Principles for certification'.

2. Description of Reference Material

Norovirus genogroup I from faecal material in a tablet format (LENTICULE disc) with a silica gel desiccant.

Norovirus in oysters: methods, limits and control options (2012)

Control options – post harvest interventions

- Depuration not reliable for viruses (as currently performed)
- Relaying may be effective but requires >4 weeks
- Cooking is effective but only when commercially controlled
- High pressure processing (to inactivate norovirus) alters organoleptic properties
- Most effective control measures is to prevent virus contaminated molluscs entering food chain

EFSA 2012

- Variety of PCR based methods are available (reviewed)
- However, proficiency testing demonstrates methodology and QC is critical for comparability (particularly quantitative)
- Standardisation undertaken by European working group (since 2004)
- Standard ISO/CEN method suitable for use in legislation

Limits: infectivity and dose response

- PCR detects both infectious and non-infectious virus particles
- Growing evidence of a dose response i.e. infectious risk increases with dose (as measured by PCR)
 - In clinical studies (Teunis et al., 2008)
 - In restaurant study (Lowther et al., 2010)
 - In outbreak samples (EFSA report, Lowther et al., 2012)
- 'infectious risk associated with low level positive oysters as determined by real-time PCR may be overestimated'
- So although cannot determine safe limit can make risk management decision on a control limit (impact vs public heath gain)
- Since indirect measure of risk sum GI and GII

Norovirus levels in outbreak-associated batches of oysters

- All positive samples from 2007-date ranked by norovirus quantity; outbreak samples in black (Lowther et al, J Food Prot. 2012; 75:389)
- Geomean outbreaks (1,048) vs non-outbreaks (121) statistically significant difference
- No outbreak sample <152 copies per gram

Impact of limits - Surveillance studies

- Qualitative studies show range of positivity in production area (7-57%) and retail (4-59%) samples
- But different methods
- Few quantitative studies using standardised methods
- EFSA reviewed available production area data from UK, France, Ireland

Production area surveillance data – findings

- All sites were classified and available for commercial harvest
- High level of positivity in all countries (>30%)
- Contamination range observed <100 to 10,000 RNA copies per gram
- Strong winter seasonality
- Absence standard would have a high impact
- Quantitative standard?

EFSA opinion: Quantitative data vs possible limits France

Coldo

EFSA: impact of potential limits for samples from commercial production areas

Table 8: Average percentage of samples that would fail during the high risk season (January to March 2010) if a maximum limit of 100, 200, 500, 1000, or 10,000 genome copies/g were set

	100 c/g	200 c/g	500 c/g	1,000 c/g	10,000 c/g
United Kingdom	65.6%	61.1%	46.9%	37.2%	2.7%
Ireland	83.3%	83.3%	72.2%	44.4%	11.1%
France	33.6%	24.4%	10.0%	7.7%	0%

let

Public Health England – monthly norovirus report

EFSA conclusions and recommendations

- Virus methods are available and considered suitable for use in legislation
- Dose dependant probability of becoming ill (dose response)
- Relationship between RNA titre and number of infectious particles may not be a constant – indirect measure of risk
- Risk managers should consider establishing virus limits for high risk LBMs (i.e. those consumed raw)
- Post harvest treatments should be validated for effectiveness against viruses

Further information-EU-RL website - www.eurlcefas.org

EURL, Cefas Weymouth Laboratory, Weymouth, Dorset, DT4 8UB

Cefas

Copyright © 2013 Cefas

Thank you

